
__

Invention Disclosure – Authority Objects V0.51 2016-11-20 Page 1/10

Authority Objects

This document outlines a scheme where Internet-based “Authority” objects enable a dynamic but still secure way of

building large-scale trust networks and associated protocols. Although the document describes a Merchant and Bank

scenario, there may be other constellations benefitting from a similar architecture.

Problem Area

Before going into the details it might be a good idea describing the problem area on a higher level which the figure below is

supposed to do:

Merchants

Merchant

Payment Provider
User Bank

User with Wallet

Relation

R
e
la

tio
n

R
e
la

ti
o
n

This looks a four-corner model with an alien element in the middle which is exactly what it is (in the original four-corner

model all Merchant messaging would go through the Merchants’ Payment Providers).

The four-corner model is a scheme where clients usually only interact through trusted third parties

Is there a problem with the four-corner model? Well, not really except that it requires quite a bit of networking and

integration to work. The purpose of this document is showing an alternative model which is claimed to achieve similar

goals with respect to security while building on a more nimble framework.

In addition, the alternative model introduces new elements which can provide information on a peer-to-peer basis allowing

trust networks to grow and add new functionality in an organic fashion in contrast to one-size-fits-all approaches.

This document borrows heavily from a proof-of-concept implementation of a payment authorization system known as

Saturn.

There are also multiple references to this document in another core document: PAS (Payment Authorization Scheme).

Continued on the next page…

This invention is

herby placed in

the Public Domain

__

Invention Disclosure – Authority Objects V0.51 2016-11-20 Page 2/10

Authenticating Merchants

If Merchants in some way call User Banks directly as in the figure in the previous page it is not entirely obvious how they

are supposed to be authenticated except that messages would preferably be digitally signed. The question is rather signed

by what?

Initial Approach: Create a Merchant PKI

A straightforward solution would be using PKI where Merchants belong to a specific Merchant trust network as illustrated

by the following figure:

Merchants

Merchant

Payment Provider

Sub CA

Root CA

Merchants

Merchant

Payment Provider

Sub CA

CA Key

EE Key

Although obviously working, this scheme introduces an additional central authority and related trust anchor (to distribute)

which seems redundant when the Bank/Payment Provider parties presumably already are “certified” like this:

Payment Provider/

Bank
Root CA

CA Key

EE Key

Payment Provider/

Bank

Payment Provider/

Bank

Payment Provider/

Bank

Since EE (End Entity) certificates are not permitted to sign certificates, other Merchant solutions than X.509 certificates

were evaluated while still building on the four-corner trust model.

Continued on the next page…

__

Invention Disclosure – Authority Objects V0.51 2016-11-20 Page 3/10

Revised Approach: Reusing the Bank/Payment Provider PKI

Instead of providing a full-fledged Merchant PKI, Merchant Bank and Payment Providers could vouch for Merchants

through the anticipated already existing Bank/Payment Provider PKI. To do that Merchants still need some kind of

signature key and/or identifier, otherwise it effectively becomes the Bank/Payment Providers who request payments which

probably is not what you want. The following picture shows the trust architecture (with respect to keys), exploited in this

document:

Merchants

Merchant

Payment Provider
Root CA

+ ID + ID + ID

Merchants

Merchant

Payment Provider

+ ID + ID + ID

The key icons under the Merchant images represent asymmetric key-pairs, while the IDs hold Merchant identity

information which minimally is just a number.

Assuming a Merchant wants to interact with another Payment Provider than the one which it is associated with it would not

be sufficient merely signing a request message with its private key only because neither the corresponding public key nor

the ID is necessarily known by the called provider.

In a “true” four-corner model this would be addressed by first letting the Merchant create and sign a message and then

have its trusted Payment Provider party counter-sign that message.

However, this document outlines a “modified” four-corner model where public, Internet-based, “Authority” objects eliminate

the need for active participation of Merchants’ trust partner in every transaction. The figure below illustrates the core:

Merchant Bank/Payment Provider

P
u
b
lis

h

MAO

MAO

MAO

PAO

Each MAO (Merchant Authority Object) contains information about a single Merchant, whereas a PAO (Provider Authority

Object) holds information about the provider itself. Both types of objects are supposed to be hosted by the associated trust

provider and be accessible on static URLs by HTTP GET requests over TLS (aka HTTPS).

__

Invention Disclosure – Authority Objects V0.51 2016-11-20 Page 4/10

MAO - Merchant Authority Object

The following shows possible contents of a Merchant Authority Object:

Note: Payee = Merchant. Although the MAO shown here is expressed in JSON, the concept is virtually independent of

format.

The @context and @qualifier properties are used throughout this specification as a way to identify the actual message

(object) type.

The authorityUrl property holds a URL to the object itself.

The providerAuthorityUrl property holds the URL to the associated PAO.

The commonName property holds the common name of the Merchant.

The id property holds a static Merchant-identifier which usually is assigned by the associated trust provider.

The publicKey object holds the Merchant’s public key in JCS format.

The timeStamp property holds the creation time of the MAO.

The expires property holds the expiration time of the MAO. See MAO Revocation and Renewals.

The signature object holds the associated trust provider’s attest signature in JCS format. Note that this is an X.509

based signature.

Continued on the next page…

{

 "@context": "https://example.com/paymentstd",

 "@qualifier": "PayeeAuthority",

 "authorityUrl": "https://payments.bigbank.com/payees/86344",
 "providerAuthorityUrl": "https://payments.bigbank.com/authority",

 "commonName": "Demo Merchant",

 "id": "86344",

 "publicKey": {

 "type": "EC",

 "curve": "P-256",

 "x": "rZ344aiTaOATmLBOdfYThvnQu_zyB1aJZrbbbks2P9I",

 "y": "lKOvfJdgN8WqEbXMDYPRSMsPicm0Tk10pmer9LxvxLg"

 },

 "timeStamp": "2016-10-20T16:26:57Z",

 "expires": "2016-10-20T17:26:58Z",

 "signature": {

 "algorithm": "ES256",
 "signerCertificate": {

 "issuer": "CN=Payment Network Sub CA3,C=EU",

 "serialNumber": "1461174554959",

 "subject": "CN=Big Bank,2.5.4.5=#1306383936363430,C=DE"

 },

 "certificatePath": [

 "MIIBtTCCAVmgAwIBAgIGAVQ0 … 5CHYX3i2r67iG_MsApiD3jFnqaJhxCZ",
 "MIIDcjCCAVqgAwIBAgIBAzANB … gkqhkiG9w0BAQ0FADAwMQswCQYD"
],

 "value": "CKAfEg7wzCoxGiCvRAMVIug0RKU … 4AOtKZK_RPNoshOGVnxry7vQZeIuIw"

 }

}

__

Invention Disclosure – Authority Objects V0.51 2016-11-20 Page 5/10

Using MAOs

The message object below shows the intended use of MAOs when calling trust providers:

The authorityUrl property holds the URL to the requesting Merchant’s MAO.

The signature object holds a JCS signature created by the Merchant’s private (signature) key.

Merchant Authentication

After verifying that the message type is known and correctly formatted (including the signature), the receiver fetches the

claimed MAO by performing an HTTP GET using the address given by authorityUrl. Although indirection adds latency,

MAOs can be cached.

Next the MAO is checked for correctness.

Next the certificatePath in the MAO is verified belonging to a (for the provider) known and trusted party.

Next the publicKey vouched for in the MAO is compared with the publicKey in the received message (they must be

identical).

Note: The authentication scheme above may not fit every purpose. In the PAS specification a request message must also

contain an embedded user authorization to be valid.

MAO Revocation and Renewals

Since Merchants are not using PKI a question arises: How do you “revoke” a Merchant? Answer: This is a part of the MAO

renewal process. That is, MAOs are supposed to be renewed with an interval like 1 hour to 1 day. The lifetime of a MAO

is expressed by the timeStamp and expires properties.

A proper implementation should preferably renew MAOs at every half of the declared lifetime in order to maintain robust

operation.

If a MAO needs to be revoked, the renew process is simply halted, eventually leading to an expired (=invalid) MAO. A

faster (and maybe safer) alternative with respect to revocation is removing revoked MAOs so that requesters get HTTP 401

as responses.

Continued on the next page…

{

 "@context": "https://example.com/paymentstd",

 "@qualifier": "SampleRequest",

 "authorityUrl": "https://payments.bigbank.com/payees/86344",
 .

 .

 Other elements

 .

 .

 "signature": {

 "algorithm": "ES256",

 "publicKey": {

 "type": "EC",

 "curve": "P-256",

 "x": "rZ344aiTaOATmLBOdfYThvnQu_zyB1aJZrbbbks2P9I",

 "y": "lKOvfJdgN8WqEbXMDYPRSMsPicm0Tk10pmer9LxvxLg"

 },
 "value": "G4ct46eTx-GgF2qrSnHKRR9f9Ajd … ju85d56gSON2M3I20-u6sfcejw"

 }
}

__

Invention Disclosure – Authority Objects V0.51 2016-11-20 Page 6/10

PAO - Provider Authority Object

The following shows possible contents of a Provider Authority Object:

The httpVersion property holds the supported HTTP version for provider communication.

The authorityUrl property holds a URL to the object itself

The serviceUrl property holds a URL to an exposed service, in this case authorization.

The providerAccountTypes property holds an optional array of supported account types (payment methods). See

Payment Method Discovery.

The encryptionParameters property holds an optional object containing parameters needed to send encrypted data to

the provider. See Replacing Tokenization and Supporting Refunding for possible applications.

The extensions property holds an optional object containing properties that may be defined on a peer-to-peer basis or by

communities. See Extending Protocols.

The timeStamp property holds the PAO creation time.

The expires property holds the PAO expiration time. The purpose of timeStamp and expires is to enable efficient

caching of PAOs while still permitting updates in a timely manner.

The signature object holds a JCS signature created by the trust provider’s private (signature) key.

Continued on the next page…

{

 "@context": "https://example.com/paymentstd",

 "@qualifier": "ProviderAuthority",

 "httpVersion": "HTTP/1.1",
 "authorityUrl": "https://payments.bigbank.com/authority",

 "serviceUrl": "https://payments.bigbank.com/service",

 "providerAccountTypes": ["https://swift.com","https://ultragiro.se"],

 "encryptionParameters": {

 "dataEncryptionAlgorithm": "A128CBC-HS256",

 "keyEncryptionAlgorithm": "ECDH-ES",

 "publicKey": {

 "type": "EC",

 "curve": "P-256",

 "x": "TfCrhFwZRU_ea7lUWwRi3HkuyT2yF9IxN5xKh2khjlk",

 "y": "nZFwxLP0TvFXD2xPKzRTIGevgLjpiMw2BP86hszj5x4"

 }

 },
 "extensions": {

 "https://somehost/clearingNumber": 45678,

 "https://somehost/addSEPALog": true

 },

 "timeStamp": "2016-09-20T04:34:29Z",

 "expires": "2016-09-20T05:34:29Z",

 "signature": {

 "algorithm": "ES256",

 "signerCertificate": {

 "issuer": "CN=Payment Network Sub CA3,C=EU",

 "serialNumber": "1461174554959",

 "subject": "CN=Big Bank,2.5.4.5=#1306383936363430,C=DE"

 },

 "certificatePath": [
 "MIIBtTCCAVmgAwIBAgIGAVQ0 … 5CHYX3i2r67iG_MsApiD3jFnqaJhxCZ",
 "MIIDcjCCAVqgAwIBAgIBAzANB … gkqhkiG9w0BAQ0FADAwMQswCQYD"
],

 "value": "cdRqFlzVEou5Zj-EqWGCCLtxY … JkEBD4fFOqVnU9dstv_P2BoHQ"

 }
}

__

Invention Disclosure – Authority Objects V0.51 2016-11-20 Page 7/10

Extending Protocols

In theory you could define a protocol once and declare it as “final”. In reality you cannot because requirements are moving

targets. A popular way of dealing with this problem is leaving some “free space” in protocols allowing parties to add things

later. However, this introduces several new problems because it requires agreements between parties to work while

handling unrecognized extensions by software is not completely straightforward either. After a while you typically end up

with incompatible implementations.

Although PAOs are not “silver bullets” they can simply the process of adding and using extensions by publishing extension

support, making it possible for a party in real-time discovering what extensions other parties understand.

Extensions have the following (recommended) syntax:

 "URI identifying the extension": arbitrary JSON compatible data

By using URIs, communities can add their own extensions without running into name-clashes with other communities’ or

standards bodies’ extensions. That is, unrecognized extensions are assumed to simply be ignored.

There are two kinds of extensions:

 Value. This kind of extension provides a value for direct consumption like "https://somehost/clearingNumber": 45678

 Protocol. This kind of extension signals that the provider supports a protocol extension but exactly where and how

is still a matter for the designers of the extension

Note that there are no syntactic differences between these two forms of extensions! In the Saturn scheme specific

extension support has been added to core messages.

Payment Method Discovery

If you take a peek in section 2.3 of the PAS document you find that the providerUrl property of virtual cards, points to

the actual service end point.

By rather pointing to the account-holding provider’s PAO, the service end point can be found indirectly in the associated

PAO’s serviceUrl property. Although indirection adds latency, PAOs can be cached.

Now assume that the underlying payment systems may differ between payment providers (some may implement many

schemes while some may only support one or two schemes), the problem for an external party is verifying that it is

compatible and select one method/system which is. Here the PAO property providerAccountTypes can provide a list

of supported methods. If a mutually compatible payment method is found, a request like specified in section 3 could be

extended with an object like

 "payeeAccount": {

 "type": "https://swift.com",

 "id": "IBAN:FR7630004003200001019471656"

 }

holding the requester’s receive account.

Continued on the next page…

__

Invention Disclosure – Authority Objects V0.51 2016-11-20 Page 8/10

Replacing Tokenization

For improving the security of traditional credit card transactions, the payment networks have introduced a concept called

“tokenization” which through cryptography and one-time keys makes card data less vulnerable to theft. However, the

scalability of this scheme is limited, creating an implicit dependence on highly centralized operations.

This document outlines another solution achieving similar goals as tokenization: Aided by authority objects, a fully

decentralized replacement for tokenization appears to be feasible.

Preconditions:

 The Merchant’s payment provider is an acquirer (aka “Card Processor”).

 The AuthorizationRequest message described in section 3 of the PAS document is extended by a property

holding the authorityUrl of the Merchant’s MAO.

Below there is state diagram enhancing the PAS main state diagram to suit card based transactions:

“Result”

Card

Network

“AuthorizationResponse”

Merchant User + Wallet User BankAcquirer/Payment Provider

⑤

⑥

⑦

(HTTP Response)

�- As in the main state diagram

(HTTP Response)

(HTTP POST)

“CardPayment

Request” ⑧

⑨

“CardPayment

Response”

Counter Signature

“Accept”

“Accept”

“payeeAuthority”

(HTTP Response)

HTTP GET

“providerAuthority”

(HTTP Response)

HTTP GET

Encryption

Decryption

Cacheable

Cacheable

Encrypt

card data

Decrypt

card data

MAO

PAO

Step by step description:

⑤ User Bank: If not already in the cache fetch the MAO using the authorityUrl of the received

AuthorizationRequest.

⑥ User Bank: if not already in the cache, fetch the associated PAO using the providerUrl of the MAO retrieved in ⑤.

__

Invention Disclosure – Authority Objects V0.51 2016-11-20 Page 9/10

⑦ User Bank: Create an AuthorizationResponse object like in section 4 of PAS while adding an object holding

encrypted card data. Expressed in a JEF structure such an object could look like this:

 "encryptedCardData": {

 "algorithm": "A128CBC-HS256",

 "encryptedKey": {

 "algorithm": "ECDH-ES",

 "publicKey": {

 "type": "EC",

 "curve": "P-256",

 "x": "TfCrhFwZRU_ea7lUWwRi3HkuyT2yF9IxN5xKh2khjlk",

 "y": "nZFwxLP0TvFXD2xPKzRTIGevgLjpiMw2BP86hszj5x4"

 },

 "ephemeralKey": {

 "type": "EC",

 "curve": "P-256",

 "x": "D7zSvy3mbS4WbB2qgKwchLRwQFir5T_p09HpnAi_RqA",

 "y": "gkwNJ2o6BtUASkmp1DO4UvllsQL5zAzvVEHB7t0CqX0"

 }

 },

 "iv": "zyConPq8uA7GFjaTkta-qA",

 "tag": "S8zUQ3tioyYPzbtNBO6Ftw",

 "cipherText": "GLkd4uHnjqL_EX9tssDNLzsZj … s7u2ezBOibNoQN5V3cl2ieB-hLHj4XppJI"

 }

 The publicKey object holds the publicKey of the PAO retrieved in ⑥.

 The algorithm properties are derived from the encryptionParameters of the PAO retrieved in ⑥.

 The cipherText property holds the encrypted card data. The actual contents are not dealt with here but would

presumably include card number, expiration date, name of card holder, and security code.

 Return the AuthorizationResponse object to the Merchant.

⑧ Merchant: After having received the AuthorizationResponse object and verified its correctness, the Merchant

wraps the AuthorizationResponse object in a newly created CardPaymentRequest object (not elaborated on in

this document), and counter-signs it with its private key. The CardPaymentRequest object is subsequently POSTed

to the Merchant’s acquirer service.

⑨ Acquirer: After having received the CardPaymentRequest object and verified its correctness, the embedded card

data is decrypted using the acquirer’s decryption key. Then the card network is called using card network specific

methods.

The rest of the state diagram was only included for completeness; it has no impact on the tokenization.

Supporting Refunding

In order to refund a customer, the Merchant must in some way send money back to the customer’s account. Since giving

the Merchant account details is not very cool, the encryption scheme used for Replacing Tokenization can also be used to

hold customer refund account data. To effectuate a refund the Merchant would have to put the original transaction into a

wrapper document, counter-sign it, and then send it to its own bank for fulfilment.

Continued on the next page…

__

Invention Disclosure – Authority Objects V0.51 2016-11-20 Page 10/10

Invention Summary

This invention disclosure describes the following sub inventions:

1. How objects published on the Internet holding information about parties including (but not limited to) service end

points, signature keys, encryption keys, algorithms, certificates, payment method support, and protocol extensions

can be architected.

2. How URLs to objects as described in claim #1 can be put into messages enabling message receivers to

dereference such objects.

3. How objects as described in claim #2 can be used for authenticating a requester who is vouched for by a trusted

party.

4. How objects as described in claim #2 can be used for customizing requests with respect to selected payment

method.

5. How objects as described in claim #2 can be used for retrieving service end points.

6. How objects as described in claim #2 can be used for customizing requests with respect to extensions.

7. How objects as described in claim #2 can be used for encrypting data which can only be decrypted by the party

publishing the object.

8. How an object like described in claim #1 representing a party which is vouched for by a trusted party can contain

a URL to a similar object for its trusted party in order to enable discovery of additional information.

References

Name Description URL

JCS JSON Cleartext Signature https://cyberphone.github.io/doc/security/jcs.html

JEF JSON Encryption Format https://cyberphone.github.io/doc/security/jef.html

JSON JavaScript Object Notation https://tools.ietf.org/rfc/rfc7159.txt

X.509 Digital Certificates and Support https://tools.ietf.org/rfc/rfc5280.txt

PAS Payment Authorization Scheme
https://cyberphone.github.io/doc/defensive-
publications/payment-authorization-scheme.pdf

Saturn Saturn Payment Authorization System https://cyberphone.github.io/doc/saturn/

Permanent document URL: https://cyberphone.github.io/doc/defensive-publications/authority-objects.pdf

Authored by: anders.rundgren.net@gmail.com

https://cyberphone.github.io/doc/security/jcs.html
https://cyberphone.github.io/doc/security/jef.html
https://tools.ietf.org/rfc/rfc7159.txt
https://tools.ietf.org/rfc/rfc5280.txt
https://cyberphone.github.io/doc/defensive-publications/payment-authorization-scheme.pdf
https://cyberphone.github.io/doc/defensive-publications/payment-authorization-scheme.pdf
https://cyberphone.github.io/doc/saturn/
https://cyberphone.github.io/doc/defensive-publications/authority-objects.pdf

