
A.Rundgren, CBOR::Core - CBOR Cross-Platform Specification Page 1/8

CBOR Core
CBOR Cross-Platform Specification

Anders Rundgren, WebPKI.org
2025-06-21

A.Rundgren, CBOR::Core - CBOR Cross-Platform Specification Page 2/8

Why not just continue with JSON forever?

Well…
• IETF standards [in practice] rather use RFC 7493 aka “I-JSON”
• The JavaScript “JSON” object in browsers is extremely limited
• JSON has no “blob” support. Base64 is all over the place
• JSON has no deterministic mode. RFC 8785 is not the same
• JSON has no extension mechanism

Properly packaged, CBOR [RFC 8949] represents a powerful
alternative, unhampered by JSON legacy:
https://datatracker.ietf.org/doc/draft-rundgren-cbor-core/

https://www.rfc-editor.org/rfc/rfc8949
https://datatracker.ietf.org/doc/draft-rundgren-cbor-core/
https://datatracker.ietf.org/doc/draft-rundgren-cbor-core/
https://datatracker.ietf.org/doc/draft-rundgren-cbor-core/
https://datatracker.ietf.org/doc/draft-rundgren-cbor-core/
https://datatracker.ietf.org/doc/draft-rundgren-cbor-core/
https://datatracker.ietf.org/doc/draft-rundgren-cbor-core/
https://datatracker.ietf.org/doc/draft-rundgren-cbor-core/

A.Rundgren, CBOR::Core - CBOR Cross-Platform Specification Page 3/8

Developers see CBOR as a set of data types + API
CBOR/CDDL Object Wrapper JavaScript

int CBOR.Int Number

bigint CBOR.BigInt BigInt

float CBOR.Float Number

bstr CBOR.Bytes Uint8Array

tstr CBOR.String String

bool CBOR.Boolean Boolean

null CBOR.Null
[] CBOR.Array
{} CBOR.Map
#6.n CBOR.Tag
#7.n CBOR.Simple Number

Object Wrappers are bi-directional, type-checking, and self-rendering.

N
on-norm

ative JavaScript Exam
ple

A.Rundgren, CBOR::Core - CBOR Cross-Platform Specification Page 4/8

Encode CBOR Data
let cbor = CBOR.Map()

.set(CBOR.Int(1), CBOR.Float(45.7))

.set(CBOR.Int(2), CBOR.String("Hi there!")).encode();

console.log(CBOR.toHex(cbor));
a201fb4046d9999999999a0269486920746865726521

N
on-norm

ative JavaScript Exam
ple

let map = CBOR.decode(cbor); // Use result from encode

console.log(map.toString()); // Diagnostic notation
{

1: 45.7,
2: "Hi there!"

}

console.log("Value=" + map.get(CBOR.Int(1)).getFloat64());
Value=45.7

Decode CBOR Data

A.Rundgren, CBOR::Core - CBOR Cross-Platform Specification Page 5/8

Strict Type Checking API – Also in JavaScript

let cbor = CBOR.diagDecode(`{
Comments are also permitted

1: 45.7,
2: "Hi there!"

}`).encode();

console.log(CBOR.toHex(cbor));
a201fb4046d9999999999a0269486920746865726521

console.log("Value=" + map.get(CBOR.Int(1)).getString());
Uncaught CborError: Expected CBOR.String, got: CBOR.Float

Decode Diagnostic Notation (Textual CBOR)

Diagnostic Notation as input format has many uses including:
• Config files
• Test data
• Protocol development

N
on-norm

ative JavaScript Exam
ple

A.Rundgren, CBOR::Core - CBOR Cross-Platform Specification Page 6/8

Deterministic Encoding (DE) in CBOR::Core

• DE rationale: simpler encoder design, practically free of
cost, and potentially improved interoperability. As a
bonus, duplicate key detection becomes default.

• DE primarily relies on sorted maps, normalized integers,
and normalized floating-point numbers.

• DE is always “on” for encoding.
• DE can optionally be disabled for decoding in order to

support “legacy” CBOR.
• DE can support novel cryptographic containers, including

embedded signatures. This is elaborated on in the draft.
• Application developers should hardly ever have to

bother with the inner workings of deterministically
encoded CBOR.

A.Rundgren, CBOR::Core - CBOR Cross-Platform Specification Page 7/8

What is the alternative to an IETF specified standard?

It is a potentially fractured CBOR landscape, where each
platform vendor does its own interpretation of what
“Useful CBOR” might entail. Presumably this gets a little
better than the JavaScript “JSON” object 🤣

For the IETF however, it is now or never!

A.Rundgren, CBOR::Core - CBOR Cross-Platform Specification Page 8/8

Unexpected side-effect of a successful IETF standard

Since CBOR::Core targets the “bulk” of SW developers, it
could eventually turn out as a de-facto definition of CBOR.

However, CBOR::Core does not in any way modify the
CBOR standard; it only provides a simplified and
standardized environment, particularly adapted for more
traditional use cases, rather than for resource-constrained
embedded systems.

Thanx!

