
Session Based Remote Attestation 2019-06-27 Page 1/3

Session Based Remote Attestation

Remote attestation is a concept where a (possibly) trusted platform signs data related to the platform and sends this data to

a remote service, which then can use this information to assure itself that it can safely deploy various objects such as

executable code and cryptographic keys to the attesting platform. There are currently two versions of this in the wild:

1) attestations associated with generated keys 2) attestations that apply to any operation. This paper describes a third

approach using a “stateful” attestation system, which provides certain features not easily obtainable with the other schemes.

Introduction and Scope

It is obvious that a system that attests generated keys like in Android (as of version 8) is only usable for key generation and

not for arbitrary objects including executable code. Due to that, this paper focuses on the second approach (attestation for

any kind of operation). The target platform is supposed to be a Trusted Execution Environment (TEE). The exact nature of

TEEs is out of scope for this paper but they are supposed to come with preinstalled attestation keys, certificates and trust

anchors. Although platform attestations can be useful for any kind of trusted application this paper only covers the

provisioning of trusted data in a TEE from a Remote Provisioning Server (RPS).

Note: this is not really a scientific paper, but an overview of two attestation schemes. For details, please turn to the

documents listed in the References section.

Static (Stateless) Remote Attestation

Static remote attestations as featured in IETF’s TEEP require that each write or read access associated with TEE provisioning

also is accompanied by fresh attestation data.

Session Based Remote Attestation

Session based remote attestation as briefly outlined in this paper is about combining multiple operations into single unit:

 Attestation of platform related data to the RPS

 Creation of a secret key shared between the TEE and the RPS

 Creation of a session inside of the TEE and reflected in the RPS

By combining attestation with shared key creation, subsequent operations performed in the associated session effectively

“inherit” the qualities of the initial attestation. See Protected API.

A practical implementation of this scheme is the Secure Key Store (SKS), designed to support mobile phone based

authentication and payment authorization systems.

Session Based Remote Attestation 2019-06-27 Page 2/3

The Attestation Concepts – Visualized

The state diagrams below illustrate the instruction flow from the RPS to the TEE:

Session Based Remote Attestation Static (Stateless) Remote Attestation

Protected API Call

Discrete API Call
Attestation

Session Termination

Attestation
Session Initiation

Protected API Call

Protected API Call

Discrete API Call
Attestation

Discrete API Call
Attestation

“Atomic”

“Receipt”

The “Atomic” label refers to the ability performing a set of calls that either are committed or rolled back in its entirety. This

feature is intended to support secure provisioning and replacements of virtual payment cards and similar where you do not

want to the leave the user with a half-provisioned or broken wallet.

If all provisioning steps succeed, a “Receipt” signed by the session key is provided giving the RPS a clear signal that it succeed.

If there is any kind of problem including software bugs, network errors, or if the user aborted the operation an error message

will rather be generated. If the RPS lose contact with the TEE the session self-destructs after an RPS-defined timeout.

In the Static Remote Attestation model, each call is self-sufficient which is optimal for simple cases where there is limited

need to build on results from previous operations.

Protected API

The protected API concept is a core feature of the Session Based Remote Attestation scheme. It is loosely based on TPM’s

authorized sessions but here combined with an initial remote attestation. Below is the generic form of the protected API:

Result Name (Session ID, {Unencrypted Parameters}, {Encrypted Parameters}, MAC)

Element Description

Result
Result of the operation. If the result contains data for consumption by the RPS,
a symmetric key derived by the shared session key vouches for this data through an
HMAC operation which output also becomes a part of the result data

Name Name of the API method

Session ID Non-secret data holding a mutual TEE/RPS session identifier

Unencrypted Parameters 0..n parameters holding clear text data

Encrypted Parameters
0..n parameters holding data encrypted by a symmetric key derived from the shared
session key

MAC

MAC holds the binary result of an HMAC operation (using a key derived from the
shared session key) over the method Name, Session ID, the optional Parameters and
an internal Sequence counter. The latter is incremented for each API call to enable
verification of API call sequence order. Since the MAC is created by the RPS, the RPS
needs to internally mimic the Sequence counter as well

Any errors found in the input data or MAC force session termination and rollback of provisioned data.

Session Based Remote Attestation 2019-06-27 Page 3/3

Other Features

There is a huge list of additional features offered by the Session Based Remote Attestation concept, many of them only

obvious when you start using it. Below is a list of things exploited in the SKS/KeyGen2 proof-of-concept system:

 High-level human-readable MAC-protected protocol talking binary to primitive (resource constrained) TEEs

 Offloading JSON and BASE64 encoding/decoding, Networking and UI to the REE level

 Makes the TEE part independent of protocol language (XML/JSON/CBOR)

 API and response aggregation/pipe-lining

 User interaction inside of the secure protocol (like user PIN code setting according to RPS-defined policy)

 Provisioning of complex structures in a step-wise fashion

 Virtual namespace eliminates need for explicit key IDs

 Credential management with issuer isolation

Security Element Support

The Session Based Remote Attestation mechanism is potentially useful with a stateless Security Element (crypto

processor) communicating with the TEE.

Acknowledgements

The Session Based Remote Attestation mechanism is very much influenced by experiences gathered at the Office of the CTO

of RSA Security and with Nokia’s ObC (On board Credential) system. Individuals who have directly or indirectly provided

valuable input include Magnus Nyström (at that time at RSA), Jan-Erik Ekberg, N. Asokan, and Kari Kostiainen (all at that time

at Nokia).

References

TEEP
Trusted Execution Environment
Provisioning

https://tools.ietf.org/html/draft-ietf-teep-architecture-02

https://tools.ietf.org/html/draft-ietf-teep-opentrustprotocol-00

TPM Trusted Platform Module https://trustedcomputinggroup.org/resource/tpm-main-specification/

SKS Secure Key Store https://cyberphone.github.io/doc/security/sks-api-arch.pdf

KeyGen2 SKS provisioning protocol https://cyberphone.github.io/doc/security/keygen2.html

Android AndroidKeyStore attestation https://developer.android.com/training/articles/security-key-attestation

ObC Onboard Credentials https://aaltodoc.aalto.fi/handle/123456789/3568

TEE/SE
TEE/Security Element “Combo”
(outdated document)

https://github.com/cyberphone/openkeystore.old/blob/master/resources/d
ocs/tee-se-combo.pdf

IPR Declaration

To simplify the adoption of Session Based Remote Attestation the core concept has been published as a “defensive

publication” at: https://priorart.ip.com/IPCOM/000215433. Unfortunately, it is close to impossible to know if anybody else

has IPR interests in this matter.

Author: Anders Rundgren, anders.rundgren.net@gmail.com

Version: 0.11

https://tools.ietf.org/html/draft-ietf-teep-architecture-02
https://tools.ietf.org/html/draft-ietf-teep-opentrustprotocol-00
https://trustedcomputinggroup.org/resource/tpm-main-specification/
https://cyberphone.github.io/doc/security/sks-api-arch.pdf
https://cyberphone.github.io/doc/security/keygen2.html
https://developer.android.com/training/articles/security-key-attestation
https://aaltodoc.aalto.fi/handle/123456789/3568
https://github.com/cyberphone/openkeystore.old/blob/master/resources/docs/tee-se-combo.pdf
https://github.com/cyberphone/openkeystore.old/blob/master/resources/docs/tee-se-combo.pdf
https://priorart.ip.com/IPCOM/000215433

