
Unified TEE Management API 2019-06-02 Page 1/4

Unified TEE Management API

The following document outlines how the current solution devised by the IETF TEEP effort would be affected by changing the

concept like proposed at: https://github.com/ietf-teep/architecture/issues/52

The current solution is an API expressed in JSON. A similar API expressed in CBOR has also been mentioned as desirable.

This proposal defines a unified binary level API, independent of JSON and CBOR. The proposal builds on predecessors like

TPM, PKCS #11 and ISO7816. As an example, smart cards are often [locally] personalized through a card-specific shared

secret. This also serves as “attestation” since the card is verifiably authentic.

With respect to IPR, the only thing that might be “novel” is the combination of

 Shared secret creation through ECDH

 Device attestation

which was filed 2012 as a defensive publication: https://priorart.ip.com/IPCOM/000215433

An obvious advantage of a low-level binary API is that it enables basic compile-time type checking. A JSON-based API requires

run-time type checking.

When the low-level binary API is called through a JSON based protocol, run-time checking of JSON structures and conversions

are performed by the REE.

Session Creation

This is currently TBD but the basics include:

 Session key creation using ECDH with at least the TEE-side using an ephemeral key

 TEE attestation that would also include the ephemeral key

 Creation of a non-secret session ID used in all API calls

Continued on the next page…

https://github.com/ietf-teep/architecture/issues/52
https://priorart.ip.com/IPCOM/000215433

Unified TEE Management API 2019-06-02 Page 2/4

InstallTA – Current Solution

The current solution requires a rather quirky two level JSON scheme for the “call” part of the API.

Outer message:

 {

 "InstallTARequest": {

 "payload": "<InstallTATBSRequest JSON above>",

 "protected": "<integrity-protected header contents>",

 "header": "<non-integrity-protected header contents>",

 "signature": "<signature contents signed by TAM private key>"

 }

 }

Inner message:

 {

 "InstallTATBSRequest": {

 "ver": "1.0",

 "rid": "<unique request ID>",

 "tid": "<transaction ID>",

 "tee": "<TEE routing name from the DSI for the SD's target>",

 "nextdsi": true | false,

 "dsihash": "<hash of DSI returned in the prior query>",

 "content": ENCRYPTED {

 "tamid": "<TAM ID previously assigned to the SD>",

 "spid": "<SPID value>",

 "sdname": "<SD name for the domain to install the TA>",

 "spcert": "<BASE64 encoded SP certificate >", // optional

 "taid": "<TA identifier>"

 },

 "encrypted_ta": {

 "key": "<JWE enveloped data of a 256-bit symmetric key by

 the recipient's TEEspaik public key>",

 "iv": "<hex of 16 random bytes>",

 "alg": "<encryption algoritm. AESCBC by default.",

 "ciphertadata": "<BASE64 encoded encrypted TA binary data>",

 "cipherpdata": "<BASE64 encoded encrypted TA personalization data>"

 }

 }

 }

This arrangement comes with the following caveat from the draft:

 The top element "<name>[Signed][Request|Response]" cannot be fully

 trusted to match the content because it doesn't participate in the

 signature generation. However, a recipient can always match it with

 the value associated with the property "payload". It purely serves

 to provide a quick reference for reading and method invocation.

Continued on the next page…

Unified TEE Management API 2019-06-02 Page 3/4

InstallTA – Proposed Solution

Using the proposed solution the “call” could be something like the following if expressed in JSON:

 {

 "InstallTARequest": {

 "sessionid": "<clear text session ID>",

 "ver": "1.0",

 "rid": "<unique request ID>",

 "tid": "<transaction ID>",

 "tee": "<TEE routing name from the DSI for the SD's target>",

 "nextdsi": true | false,

 "dsihash": "<hash of DSI returned in the prior query>",

 "tamid": "<TAM ID previously assigned to the SD>",

 "spid": "<SPID value>",

 "sdname": "<SD name for the domain to install the TA>",

 "spcert": "<BASE64 encoded SP certificate >", // optional

 "taid": "<TA identifier>"

 "ciphertadata": "<BASE64 encoded encrypted TA binary data>",

 "cipherpdata": "<BASE64 encoded encrypted TA personalization data>",

 "mac": "<BASE64 HMAC signature derived from the session key>"

 }

 }

The TEE Management API itself could in a Java-like fashion be like:

ReturnValue InstallTARequest(String sessionid,

String ver,

String rid,

String tid,

String tee,

boolean nextdsi,

byte[] dsihash,

String tamid,

String spid,

String sdname,

byte[] spcert,

String taid,

byte[] ciphertadata,

byte[] cipherpdata,

byte[] mac)

Notes:

Return value: see Return Values

The API call is signed by a HMAC operation over the concatenation of:

 The method name

 The sessionid

 An internal counter which is incremented for each call to check sequence adherence

 All parameters except for mac (which is holding the result)

The key used by the HMAC is derived from the shared session key.

Encrypted parameters like ciphertadata are encrypted by a symmetric key derived from the shared session key.

It is quite possible that a bunch of these parameters like "rid" and "tid" would rather be associated with the sessionid.

Unified TEE Management API 2019-06-02 Page 4/4

Session Termination

To “commit” the calls performed during a session, the session must be terminated using a new API method.

The session termination method returns an attestation based on the shared session key telling that the operation succeeded;

else it returns an error message.

Return Values

In order to simplify decoding, return values follow a common scheme based on an object here expressed in Java but would in

a real implementation preferably be in CBOR:

class ReturnValue {

 boolean success = true;

 // If success is true, zero or more method specific elements follows

 // If success is false, a common error object follows

}

Method specific data is always attested by a HMAC signature.

Note that some methods like InstallTA do not seem to need any specific return data.

Author: Anders Rundgren

Version: 0.2

