
Unified TEE Management API 2019-06-02 Page 1/4

Unified TEE Management API

The following document outlines how the current solution devised by the IETF TEEP effort would be affected by changing the

concept like proposed at: https://github.com/ietf-teep/architecture/issues/52

The current solution is an API expressed in JSON. A similar API expressed in CBOR has also been mentioned as desirable.

This proposal defines a unified binary level API, independent of JSON and CBOR. The proposal builds on predecessors like

TPM, PKCS #11 and ISO7816. As an example, smart cards are often [locally] personalized through a card-specific shared

secret. This also serves as “attestation” since the card is verifiably authentic.

With respect to IPR, the only thing that might be “novel” is the combination of

 Shared secret creation through ECDH

 Device attestation

which was filed 2012 as a defensive publication: https://priorart.ip.com/IPCOM/000215433

An obvious advantage of a low-level binary API is that it enables basic compile-time type checking. A JSON-based API requires

run-time type checking.

When the low-level binary API is called through a JSON based protocol, run-time checking of JSON structures and conversions

are performed by the REE.

Session Creation

This is currently TBD but the basics include:

 Session key creation using ECDH with at least the TEE-side using an ephemeral key

 TEE attestation that would also include the ephemeral key

 Creation of a non-secret session ID used in all API calls

Continued on the next page…

https://github.com/ietf-teep/architecture/issues/52
https://priorart.ip.com/IPCOM/000215433

Unified TEE Management API 2019-06-02 Page 2/4

InstallTA – Current Solution

The current solution requires a rather quirky two level JSON scheme for the “call” part of the API.

Outer message:

 {

 "InstallTARequest": {

 "payload": "<InstallTATBSRequest JSON above>",

 "protected": "<integrity-protected header contents>",

 "header": "<non-integrity-protected header contents>",

 "signature": "<signature contents signed by TAM private key>"

 }

 }

Inner message:

 {

 "InstallTATBSRequest": {

 "ver": "1.0",

 "rid": "<unique request ID>",

 "tid": "<transaction ID>",

 "tee": "<TEE routing name from the DSI for the SD's target>",

 "nextdsi": true | false,

 "dsihash": "<hash of DSI returned in the prior query>",

 "content": ENCRYPTED {

 "tamid": "<TAM ID previously assigned to the SD>",

 "spid": "<SPID value>",

 "sdname": "<SD name for the domain to install the TA>",

 "spcert": "<BASE64 encoded SP certificate >", // optional

 "taid": "<TA identifier>"

 },

 "encrypted_ta": {

 "key": "<JWE enveloped data of a 256-bit symmetric key by

 the recipient's TEEspaik public key>",

 "iv": "<hex of 16 random bytes>",

 "alg": "<encryption algoritm. AESCBC by default.",

 "ciphertadata": "<BASE64 encoded encrypted TA binary data>",

 "cipherpdata": "<BASE64 encoded encrypted TA personalization data>"

 }

 }

 }

This arrangement comes with the following caveat from the draft:

 The top element "<name>[Signed][Request|Response]" cannot be fully

 trusted to match the content because it doesn't participate in the

 signature generation. However, a recipient can always match it with

 the value associated with the property "payload". It purely serves

 to provide a quick reference for reading and method invocation.

Continued on the next page…

Unified TEE Management API 2019-06-02 Page 3/4

InstallTA – Proposed Solution

Using the proposed solution the “call” could be something like the following if expressed in JSON:

 {

 "InstallTARequest": {

 "sessionid": "<clear text session ID>",

 "ver": "1.0",

 "rid": "<unique request ID>",

 "tid": "<transaction ID>",

 "tee": "<TEE routing name from the DSI for the SD's target>",

 "nextdsi": true | false,

 "dsihash": "<hash of DSI returned in the prior query>",

 "tamid": "<TAM ID previously assigned to the SD>",

 "spid": "<SPID value>",

 "sdname": "<SD name for the domain to install the TA>",

 "spcert": "<BASE64 encoded SP certificate >", // optional

 "taid": "<TA identifier>"

 "ciphertadata": "<BASE64 encoded encrypted TA binary data>",

 "cipherpdata": "<BASE64 encoded encrypted TA personalization data>",

 "mac": "<BASE64 HMAC signature derived from the session key>"

 }

 }

The TEE Management API itself could in a Java-like fashion be like:

ReturnValue InstallTARequest(String sessionid,

String ver,

String rid,

String tid,

String tee,

boolean nextdsi,

byte[] dsihash,

String tamid,

String spid,

String sdname,

byte[] spcert,

String taid,

byte[] ciphertadata,

byte[] cipherpdata,

byte[] mac)

Notes:

Return value: see Return Values

The API call is signed by a HMAC operation over the concatenation of:

 The method name

 The sessionid

 An internal counter which is incremented for each call to check sequence adherence

 All parameters except for mac (which is holding the result)

The key used by the HMAC is derived from the shared session key.

Encrypted parameters like ciphertadata are encrypted by a symmetric key derived from the shared session key.

It is quite possible that a bunch of these parameters like "rid" and "tid" would rather be associated with the sessionid.

Unified TEE Management API 2019-06-02 Page 4/4

Session Termination

To “commit” the calls performed during a session, the session must be terminated using a new API method.

The session termination method returns an attestation based on the shared session key telling that the operation succeeded;

else it returns an error message.

Return Values

In order to simplify decoding, return values follow a common scheme based on an object here expressed in Java but would in

a real implementation preferably be in CBOR:

class ReturnValue {

 boolean success = true;

 // If success is true, zero or more method specific elements follows

 // If success is false, a common error object follows

}

Method specific data is always attested by a HMAC signature.

Note that some methods like InstallTA do not seem to need any specific return data.

Author: Anders Rundgren

Version: 0.2

