
Saturn © WebPKI.org 2020-10-26, API V0.68 1/20

Saturn™

End-to-End Secured Payment Authorization System

• Decentralized operation accomplishes similar goals as 3D Secure and

“Tokenization” but without registries or additional services

• Facilitates the design of brand/bank independent, “rich UI” wallets, supporting

both card- and account-to-account payments

• Equally applicable on the mobile Web, locally in a shop, at an automated gas

station, or as a “PC companion” on the Web

• Eliminates the traditional payment terminal and reduces merchant PCI

requirements to a minimum

• Requires a single “active” method on the issuer side to function*

Disclaimer: This is a system in development and specifications are subject to change without notice

* Reservations and recurring payments will in non-card-based scenarios need a second method as well

Saturn © WebPKI.org 2020-10-26, API V0.68 2/20

€ 550

AuthorizationResponse

AuthorizationRequest

PayerAuthorization

(Signed & Encrypted user authorization +

Clear text Payment Method and Bank URL)

Merchant User + Wallet

User BankMerchant Bank

Push (A2A) Payments

State Diagram “Checkout/Pay”

PaymentClientRequest

“Result”

Merchant Lookup 

Merchant Provider/Bank

Lookup & Verification 

User Authorization

• Decryption

• Verification

User Bank Verification

②

③

④

⑤

⑥

①

Existing Payment Rails

(Bank-to-Bank Payments)

 See Authority Objects. The rationale for encrypting user authorizations is for enabling such data to pass through Merchants which simplifies

the Wallet as described in the Saturn FAQ. Step #5 does not apply when running under the conditions outlined in Hybrid Mode.

⑦

(HTTPS POST)

(HTTP Response)

Select Card

User Authorization using a

PIN or Biometric operation

(Scenario dependent “channel”

technology used for Merchant

to Wallet communication)

(Scenario dependent)

Encryption

Private Key

All transaction steps are now available

in a single object where each layer is

signed and embeds inner layers

Request

Signature

Virtual Cards

Virtual Card Properties

Signature Key

Encryption

Public Key

• Payment Method URL

• Bank Authority URL

• Account ID

• Card Logotype

• …

User Bank Lookup 

Discovery of selected

payment method

Creation of payment

method specific data

Including URL to own

authority object

Total: €550

Authorization

Signature

(Scenario dependent)

Saturn © WebPKI.org 2020-10-26, API V0.68 3/20

{
"@context": "https://webpki.github.io/saturn/v3",
"@qualifier": "PaymentClientRequest",
"supportedPaymentMethods": [{

"paymentMethod": "https://bankdirect.net",
"payeeAuthorityUrl": "https://payments.bigbank.com/payees/86344"

},{
"paymentMethod": "https://supercard.com",
"payeeAuthorityUrl": "https://secure.cardprocessor.com/payees/1077342"

}],
"paymentRequest": {

"commonName": "Space Shop",
"amount": "550.00",
"currency": "EUR",
"referenceId": "2020100700000013",
"timeStamp": "2020-10-07T08:31:44Z",
"expires": "2020-10-07T09:02:00Z"

},
"receiptUrl": "https://spaceshop.com/receipts/2020100700000013j5lOEL2w9cWBFUwkbrFgjQ"

}

② Merchant Invokes the Wallet with a PaymentClientRequest Message

The Merchant (Payee) invokes the Wallet (after a user action) with a list of supported payment methods. Those who are matching the
user’s virtual cards will be shown in the Wallet UI to select from. The payeeAuthorityUrl properties are used to securely bind the

Merchant’s request signature to a particular payment method / network. The paymentRequest object contains the actual request data

to be reflected in the wallet UI. The optional receiptUrl points to a Web address where an associated digital receipt will be published.

To limit misuse, the receiptUrl is supposed to be randomized as well. See Receipt Processing.

Payment method URLs to be matched against stored virtual cards

Saturn © WebPKI.org 2020-10-26, API V0.68 4/20

②Wallet Receives the PaymentClientRequest

When PaymentClientRequest has been received by the client, the Wallet user interface is launched. The authorization method may consist

of a PIN but could also be a biometric option such as touching a fingerprint reader. The authorization is only used to unlock the Signature Key

as described in next slide. Note that the Saturn authorization concept not only emulates payment cards, but payment terminals as well.

TEE Protected Keys

Virtual Card Logotype &

Account Selector ( Swipe )

Optional: Real-Time

Account Balance

Adapted to:

• Your Language

• Your Disability

UI Showing:

• Direct Payment

• Booking

• Gas Station

• Subscription

• Etc.

PIN or Biometric for User Authorization
(as defined by the virtual card issuer, not the Wallet)

Saturn © WebPKI.org 2020-10-26, API V0.68 5/20

{
"requestHash": {

"algorithm": "S256",
"value": "5MPHvmWLuOGRAm00Z78C7KW5f1kKPMW9OrI2D4VK1Oo"

},
"payeeAuthorityUrl": "https://payments.bigbank.com/payees/86344",
"payeeHost": "spaceshop.com",
"paymentMethod": "https://bankdirect.net",
"credentialId": "54674448",
"accountId": "FR7630002111110020050014382",
"encryptionParameters": {

"algorithm": "A256GCM",
"encryptionKey": "9MdPM5jEnPRtk-yYGIMmYaQLrk0gTXVQNhQQIHQ0aQk"

},
"userAuthorizationMethod": "PIN",
"timeStamp": "2020-10-07T10:32:35+02:00",
"software": {

"name": "WebPKI Suite/Saturn",
"version": "1.38"

},
"platform": {

"name": "Android",
"version": "10",
"vendor": "Huawei"

},
"authorizationSignature": {

"algorithm": "ES256",
"publicKey": {

"kty": "EC",
"crv": "P-256",
"x": "censDzcMEkgiePz6DXB7cDuwFemshAFR90UNVQFCg8Q",
"y": "xq8rze6ewG0-eVcSF72J77gKiD0IHnzpwHaU7t6nVeY"

},
"value": "EaGSWKQK6DFHVe8RJHlhA5c3qKSN1Gjh....Pdi6vaxdA8ofiAW6Py-wxWUNFxybSTAA"

}
}

③ Internal Wallet Processing – Creation of Signed Authorization Data

When the user has authorized the transaction the Signature (private) key associated with the selected card is used to sign a
JSON object holding authorization data as follows : requestHash holds the hash of the paymentRequest object (see

PaymentClientRequest slide), while accountId holds the actual Account ID of the selected card. For more information about

encryptionParameters, turn to the slide Risk Based Authentication.

Core data of selected virtual card

Hash of received paymentRequest object based on RFC 8785

Signature key of selected virtual card

Acquired by the Wallet software

Copied from PaymentClientRequest

Input to Risk Based Authentication

Authorization signature based on JSF

https://www.rfc-editor.org/rfc/rfc8785.html
https://cyberphone.github.io/doc/security/jsf.html

Saturn © WebPKI.org 2020-10-26, API V0.68 6/20

{
"@context": "https://webpki.github.io/saturn/v3",
"@qualifier": "PayerAuthorization",
"providerAuthorityUrl": "https://payments.mybank.com/authority",
"paymentMethod": "https://bankdirect.net",
"encryptedAuthorization": {

"algorithm": "A256GCM",
"keyEncryption": {

"algorithm": "ECDH-ES",
"publicKey": {

"kty": "EC",
"crv": "P-256",
"x": "TfCrhFwZRU_ea7lUWwRi3HkuyT2yF9IxN5xKh2khjlk",
"y": "nZFwxLP0TvFXD2xPKzRTIGevgLjpiMw2BP86hszj5x4"

},
"ephemeralKey": {

"kty": "EC",
"crv": "P-256",
"x": "80mByDxNt213LAKLjTC7VWLg0HwgZoyrxdf33Cvpk1c",
"y": "73oDKxbAYxFVbWckvxHY8gO2NY_nK8nCVwWUoP8GBy0"

}
},
"iv": "9AXDHPcmNNn77jK8",
"tag": "qpUpZZRD0K1JRCyJui_9mw",
"cipherText": "yUrV2yfBwUoylw2GE-0dsbmT1wbrWhmn....F-7jHwRlVlt6Cvpj0Ok7FD2Kcon_TjiQ"

}
}

③Wallet Processing – Creation and Sending of PayerAuthorization Message

PayerAuthorization messages provide the URL to the issuing bank’s “Authority” object and the selected payment method which

both are featured in virtual cards. This data is used by Merchants (Payees) for routing payment authorization requests to the

applicable Bank. The actual authorization data (see previous slides) is encrypted by the Wallet using an Issuer (not User) specific

Encryption key (with a matching private key only known by the issuing Bank), which also is stored in the virtual card. That is,

Merchants do not get any information concerning Users (Payers) except their Bank and associated payment method.

“Non-secret” data of selected virtual card

Encrypted user authorization

Encryption key of selected virtual card

Encryption object based on JEF

https://cyberphone.github.io/doc/security/jef.html

Saturn © WebPKI.org 2020-10-26, API V0.68 7/20

{
"@context": "https://webpki.github.io/saturn/v3",
"@qualifier": "ProviderAuthority",
"httpVersions": ["HTTP/1.1", "HTTP/2"],
"providerAuthorityUrl": "https://payments.mybank.com/authority",
"commonName": "My Bank",
"homePage": "https://mybank.com",
"logotypeUrl": "https://mybank.com/images/logotype.svg",
"serviceUrl": "https://payments.mybank.com/service",
"supportedPaymentMethods": {

"https://bankdirect.net": ["https://sepa.payments.org/saturn/v3#account"],
"https://supercard.com": ["https://sepa.payments.org/saturn/v3#account"]

},
"extensions": {

"https://webpki.github.io/saturn/v3/extensions#hybrid": "https://payments.mybank.com/hybridpay",
"https://webpki.github.io/saturn/v3/extensions#balance": "https://payments.mybank.com/balancereq"

},
"signatureProfiles": ["https://webpki.github.io/saturn/v3/signatures#ES256.P-256",

"https://webpki.github.io/saturn/v3/signatures#RS256.2048"],
"encryptionParameters": [{

"dataEncryptionAlgorithm": "A128CBC-HS256",
"keyEncryptionAlgorithm": "ECDH-ES",
"publicKey": {

"kty": "EC",
"crv": "P-256",
"x": "TfCrhFwZRU_ea7lUWwRi3HkuyT2yF9IxN5xKh2khjlk",
"y": "nZFwxLP0TvFXD2xPKzRTIGevgLjpiMw2BP86hszj5x4"

}
}],
"timeStamp": "2020-10-07T08:05:46Z",
"expires": "2020-10-07T09:05:47Z",
"issuerSignature": {

"algorithm": "ES256",
"certificatePath": ["MIIBtTCCAVmgAwIB....3FwxFeOawwmz1bM6", "MIIDcjCCAVqgAwIB....e_-5TddhlTUMNPvw"],
"value": "ibiFHsP9DizZQ8k6DUjP9zrR3Mkg5v1L....xiL58nHozxZUOWJODQ4MNqBxWWiooMpw"

}
}

Bank/Acquirer ProviderAuthority Object

Authority object (self) URL of a virtual payment card issuer

“Authority” objects hold Keys, Payment methods, and URLs which are used by Merchants, Banks, and Acquirers as Secure Distributed Entity

Databases creating the foundation for scalability including Delegated Trust. “Authority” objects are published on the Internet and accessed by
HTTP GET operations. A Bank/Acquirer “Authority” object is signed by the Bank/Acquirer itself. The supportedPaymentMethods object

declares the payment methods understood by the Bank. The encryptionParameters are used by Issuers for encrypting user account data.

Accepted signature types

Payment network, [Payment rails, …]

Encryption parameters adapted for JEF

Issuer signature based on JSF

https://cyberphone.github.io/doc/security/jef.html
https://cyberphone.github.io/doc/security/jsf.html

Saturn © WebPKI.org 2020-10-26, API V0.68 8/20

{
"@context": "https://webpki.github.io/saturn/v3",
"@qualifier": "PayeeAuthority",
"payeeAuthorityUrl": "https://payments.bigbank.com/payees/86344",
"providerAuthorityUrl": "https://payments.bigbank.com/authority",
"localPayeeId": "86344",
"commonName": "Space Shop",
"homePage": "https://spaceshop.com",
"logotypeUrl": "https://spaceshop.com/images/logotype.svg",
"accountVerifier": {

"algorithm": "S256",
"hashedPayeeAccounts": ["kUwpqk-cbkDaBjwDD_etPSh_FtC-Ap2K_A2MQzXNy_U"]

},
"signatureParameters": [{

"algorithm": "ES256",
"publicKey": {

"kty": "EC",
"crv": "P-256",
"x": "8VY09NWUy-aVGNHZZQDIyy-H3RxLfXbiPR2SVlEubjE",
"y": "OuHehTNjMbphW0s3nBBVdAALLdzE9x-hup4CnJ1gM-o"

}
}],
"timeStamp": "2020-10-07T08:49:57Z",
"expires": "2020-10-07T09:49:58Z",
"issuerSignature": {

"algorithm": "ES256",
"publicKey": {

"kty": "EC",
"crv": "P-256",
"x": "-Vr8Wk3ygt5J2_J3R8TrRaa-AWW7ZiXa6q1P7ELs6gc",
"y": "Vuc6z3WiZ3tgXTXvU6F5qdiiYePWeUI1q9Tx83ySDcM"

},
"value": "Xb_yLOpGbmboDjufFnCDdRfyAJiNm1-U....8ou__kr_izI05kOnJshpd-JkpcWcP4kw"

}
}

Merchant (Payee) PayeeAuthority Object

A Merchant (Payee) “Authority” object is like a short-lived, automatically updated, X.509 certificate not requiring a CA. Such an object is
published on the address payeeAuthorityUrl hosted by the party (Bank or Acquirer) which vouches for the Merchant. If a Merchant is to

be “revoked”, the object is simply removed. To automate revocation checks, there is an expires attribute which also is used to clear caching

of Merchant “Authority” objects. The signatureParameters list enable key renewals as well as validation of signatures using old keys.

Merchant core data

URL to the Merchant “Authority” object itself

The same public key as in the Bank/Acquirer “Authority” object signature certificate

URL to the Merchant Bank/Acquirer “Authority” object

Merchant signature key

Merchant account verification data

Issuer signature based on JSF

https://cyberphone.github.io/doc/security/jsf.html

Saturn © WebPKI.org 2020-10-26, API V0.68 9/20

{
"@context": "https://webpki.github.io/saturn/v3",
"@qualifier": "AuthorizationRequest",
"recipientUrl": "https://payments.mybank.com/service",
"payeeAuthorityUrl": "https://payments.bigbank.com/payees/86344",
"paymentMethod": "https://bankdirect.net",
"paymentRequest": {

Copy of the paymentRequest object
},
"encryptedAuthorization": {

Copy of the encryptedAuthorization object
},
"payeeReceiveAccount": {

},
"clientIpAddress": "220.13.198.144",
"timeStamp": "2020-10-07T08:32:38Z",
"software": {

"name": "WebPKI.org - Payee",
"version": "1.00"

},
"requestSignature": {

"algorithm": "ES256",
"publicKey": {

"kty": "EC",
"crv": "P-256",
"x": "8VY09NWUy-aVGNHZZQDIyy-H3RxLfXbiPR2SVlEubjE",
"y": "OuHehTNjMbphW0s3nBBVdAALLdzE9x-hup4CnJ1gM-o"

},
"value": "91wNxmoZt-TKUGD1R7prluueL2DSv9iZ....TqYipTRDXSewSlfWgnoxsTkjkw07pJog"

}
}

④ Merchant Creates and Sends an AuthorizationRequest Message

The AuthorizationRequest is sent by a Merchant (Payee) to the serviceUrl of the “Authority” object given by the user’s choice of

payment card (method). See providerAuthorityUrl. The inclusion of payeeAuthorityUrl enables the targeted User Bank to verify that

the Merchant belongs to a known payment network.

URL to Merchant “Authority” object

Payment method (must match user authorization)

Where the message is actually sent

Sample data for a SEPA payment method:

"@context": "https://sepa.payments.org/saturn/v3#account",
"iban": "FR7630004003200001019471656",

"nonce": "nZFwxLP0TvFXD2xPKzRTIGevgLjpiMw2BP86hszj5x4"

The nonce is adding privacy protection to the account verification

hashes published in the accountVerifier object of PayeeAuthority.

Merchant signature key

Request signature based on JSF

https://cyberphone.github.io/doc/security/jsf.html

Saturn © WebPKI.org 2020-10-26, API V0.68 10/20

{
"@context": "https://webpki.github.io/saturn/v3",
"@qualifier": "AuthorizationResponse",
"accountReference": "FR*0504",
"encryptedAccountData": {

Parameters removed for brevity…

"cipherText": "okjRig8y97oHa0kw7buu17XcTZOZAtS1....XG4BoMqDwY0e2fxlGPSHzko5Hs_0UHXz"
},
"referenceId": "#0100345648",
"logData": "CT100006",
"timeStamp": "2020-10-07T08:32:38Z",
"software": {

"name": "WebPKI.org - Bank",
"version": "1.00"

},
"authorizationRequest": {

Copy of the entire AuthorizationRequest message

},
"authorizationSignature": {

"algorithm": "ES256",
"certificatePath": ["MIIBtTCCAVmgAwIB....3FwxFeOawwmz1bM6", "MIIDcjCCAVqgAwIB....e_-5TddhlTUMNPvw"],
"value": "b03W5RPCmoA2ARILtbdvCrlrAj5i0Cr4....hib3XUqun9KxpbL6Ig7i4pA_ko7Gf4yA"

}
}

⑤ User Bank Responds with an AuthorizationResponse Message

After received the AuthorizationRequest, User Bank performs an extensive list of operations to verify the validity of the request,

including fetching the Merchant’s (Payee) PayeeAuthority and ProviderAuthority objects. If the verification succeeds, User Bank

responds with an AuthorizationResponse message which in addition to the original AuthorizationRequest, also holds the user’s

account data (ID) encrypted by the Merchant provider’s encryption key. This information is used for Card Payments and Refunds.

Encrypted user account data

User Bank certificate path

Optional short form of the user account to be featured in receipts etc.

Authorization signature based on JSF

Encryption object based on JEF

https://cyberphone.github.io/doc/security/jsf.html
https://cyberphone.github.io/doc/security/jef.html

Saturn © WebPKI.org 2020-10-26, API V0.68 11/20

“Result”

Card

Network

AuthorizationResponse

Merchant User + Wallet User Bank

Acquirer

Card Payments

State Diagram

User Bank Verification
⑤

⑥

 See Authority Objects. The flow may stop after step #5 resulting in a Secure Authorization Object which only can be activated by another

Request. This scheme supports hotel bookings, upfront reservations for automated gas stations, as well as recurring payments. The

card data Encryption and Decryption processes enable standard card data to securely pass through Merchants from Issuers to Acquirers.

⑦

(HTTP Response)

①②③④ Identical to Bank-to-Bank Payments

All transaction steps are now available

in a single object where each layer is

signed and embeds inner layers
(HTTP Response)

(HTTPS POST)

TransactionRequestMerchant Verification

Card Data Decryption

⑧

⑨

TransactionResponse

Request

Signature

See also Hybrid Mode

Acquirer Lookup 

Card Data Encryption

Authorization

Signature

Authorization

Signature

(Scenario dependent)

€ 550

Saturn © WebPKI.org 2020-10-26, API V0.68 12/20

€ 550

“Result”

AuthorizationResponse

Merchant User + Wallet User Bank

Hybrid Mode

State Diagram

User Bank Verification
⑤

⑥

In the Hybrid mode traditional card payment methods are “emulated” including support for hotel bookings, upfront reservations for automated

gas stations, as well as reoccurring payments. For three-corner payment schemes like PayPal and AliPay as well as for payments where the

User and Merchant have the same bank, step #7 is not applicable.

⑦

(HTTP Response)

①②③④ Identical to Bank-to-Bank Payments

All transaction steps are now available

in a single object where each layer is

signed and embeds inner layers (HTTP Response)

(HTTPS POST)

TransactionRequest
Merchant Verification

⑧

⑨

TransactionResponse

Request

Signature

Existing Payment Rails

(Bank-to-Bank Payments)

Merchant Bank

Authorization

Signature

Authorization

Signature

(Scenario dependent)

Saturn © WebPKI.org 2020-10-26, API V0.68 13/20

{
"@context": "https://webpki.github.io/saturn/v3",
"@qualifier": "ProviderUserResponse",
"encryptedMessage": {

"algorithm": "A256GCM",
"iv": "_K4Sgt5y1uKhwiSi",
"tag": "Xmqyx5XZWmxSFfypag-y_A",
"cipherText": "qXIsLsZ-zIxVllV920dpxPmTOwGRghU_....fsxbw1LX61Tu6GbsSw1gXEcwkW8S4fOQ"

}
}

Private Messaging and Risk Based Authentication

Occasionally a User Bank needs to inform the user of something related to an AuthorizationRequest like an account overdraft.

Another situation requiring an action from the user’s side is when the amount requested is unusually high or when “suspicious” user

patterns have been identified. In both cases the request is ignored and the normal response is replaced by a message which only the

(Wallet) user can read while still being delivered through the Merchant’s “channel” to the Wallet. Privacy is accomplished by the User
Bank encrypting the message contents with the symmetric key supplied in encryptionParameters

(see Creation of Signed Authorization Data). This key is a random value generated for each Wallet invocation.

A private message like above (requiring an action), forces the Wallet adding the response to the user authorization data and then

performing a full signed and encrypted User Authorization request again. This process may be repeated if necessary.

Decrypted and rendered by the Wallet

(non-normative sample)

Encryption object based on JEF

Encrypted message from User Bank

https://cyberphone.github.io/doc/security/jef.html

Saturn © WebPKI.org 2020-10-26, API V0.68 14/20

RefundRequest Option

{
"@context": "https://webpki.github.io/saturn/v3",
"@qualifier": "RefundRequest",
"recipientUrl": "https://payments.bigbank.com/refund",
"amount": "550.00",
"payeeSourceAccount": {

"@context": "https://sepa.payments.org/saturn/v3#account",
"iban": "FR7630004003200001019471656"

},
"referenceId": "#1000004",
"timeStamp": "2020-10-07T22:07:50Z",
"software": {

"name": "WebPKI.org - Payee",
"version": "1.00"

},
"authorizationResponse": {

Copy of the entire AuthorizationResponse message
},
"requestSignature": {

"algorithm": "ES256",
"publicKey": {

"kty": "EC",
"crv": "P-256",
"x": "8VY09NWUy-aVGNHZZQDIyy-H3RxLfXbiPR2SVlEubjE",
"y": "OuHehTNjMbphW0s3nBBVdAALLdzE9x-hup4CnJ1gM-o"

},
"value": "rrqbEkm7ZM6uGjnIWg-3c2YHPXsDhzVz....FsMSNotc7QvAsvn2sTFJ-GGdN5Fx6EfQ"

}
}

By including the account ID of the user (but encrypted with the Merchant’s payment provider key), in the AuthorizationResponse object

the Merchant can (aided by their payment provider), transfer money in the opposite direction. A RefundRequest message consists of

an embedded AuthorizationResponse and an amount, signed by the Merchant. Note that the Merchant must send the refund request

to its own bank. The Merchant’s Bank is supposed to respond with (a here not shown) RefundResponse object.

Merchant signature key

Request signature based on JSF

https://cyberphone.github.io/doc/security/jsf.html

Saturn © WebPKI.org 2020-10-26, API V0.68 15/20

Receipt Processing

If a receiptUrl is included in the PaymentClientRequest the Saturn wallet begins polling the URL after a successful payment operation. If

succeeding, the wallet stores the JSON-formatted receipt object locally. Retrieved receipts can be viewed with a built-in receipt rendering

application like shown above. Receipts may also be “synched” to a cloud service of the user’s choice. Since receipts are digitally signed they can

also be securely verified as being created by the merchant in question. Receipts objects may also be transferred to other parties like employers.

Saturn © WebPKI.org 2020-10-26, API V0.68 16/20

{
"@context": "https://webpki.github.io/saturn/v3",
"@qualifier": "Receipt",
"status": "AVAILABLE",
"referenceId": "2020102600000002",
"timeStamp": "2020-10-26T07:25:33+00:00",
"commonName": "Space Shop",

"physicalAddress": ["2000 Avenue des Champs-Élysées",
"75000 Paris",
"France"],

"phoneNumber": "01.50.10.42.08",
"emailAddress": "support@spaceshop.com",
"amount": "655.00",
"currency": "EUR",
"subtotal": "545.74",
"tax": {

"amount": "109.14",
"percentage": "20"

},
"shipping": {

"description": ["Free shipping"],
"amount": "0.00"

},
"barcode": {

"type": "CODE_128",
"value": "2020102600000002"

},
"freeText": [

"Return Policy:",

"Items can be returned within 30 days of receipt of deli
very using the Online Returns Center. Once the item is recei
ved at our Customer Support Center, it takes 2 business day
s for the refund to be processed and 3-5 business days for t
he refund amount to show up in your account."

],
"lineItems": [{

"description": ["Model Rocket",
"SpaceX Falcon Heavy",
"Scale 1:200"],

"quantity": "1",

"subtotal": "499.99"

},{

"description": ["Nasa T-Shirt",
"Grey, Size: L"],

"quantity": "3",
"subtotal": "45.75"

}],
"paymentMethodName": "Bank Direct",
"accountReference": "FR*0143",
"payeeAuthorityUrl": "https://payments.bigbank.com/payees/86344",
"payerProviderData": {

"commonName": "My Bank",
"providerAuthorityUrl": "https://payments.mybank.com/authority",
"referenceId": "#0100345452",
"payeeRequestId": "2020102600000002",
"timeStamp": "2020-10-26T07:25:34+00:00"

},
"receiptSignature": {

"algorithm": "ES256",
"publicKey": {

"kty": "EC",
"crv": "P-256",
"x": "8VY09NWUy-aVGNHZZQDIyy-H3RxLfXbiPR2SVlEubjE",
"y": "OuHehTNjMbphW0s3nBBVdAALLdzE9x-hup4CnJ1gM-o"

},
"value": "_17N4_ZhdDgSBtV-Q9QzVqu….BrQijgVNJGR3c0-gTeB3NdV18zckw"

}

}

JSON Receipt Object

Merchant signature key

Receipt signature based on JSF

https://cyberphone.github.io/doc/security/jsf.html

Saturn © WebPKI.org 2020-10-26, API V0.68 17/20

Gas Station Option (Reserve/Capture)

Gas Station payments presume Card Payments or Hybrid Mode to be carried out.

{
"@context": "https://webpki.github.io/saturn/v3",
"@qualifier": "PaymentClientRequest",
"supportedPaymentMethods": [

Parameters removed for brevity…
],
"paymentRequest": {

"commonName": "Planet Gas",
"amount": "200.00",
"currency": "EUR",
"nonDirectPayment": {

"type": "RESERVATION",
"subType": "GAS_STATION",
"fixed": true,
"expires": "2020-09-25T06:22:00Z"

},
"referenceId": "#1000017",
"timeStamp": "2020-10-07T06:22:59Z",
"expires": "2020-10-07T06:53:00Z"

}
}

Additional object

User Interface Implications

(non-normative sample using rotating text)

Saturn © WebPKI.org 2020-10-26, API V0.68 18/20

Real Time Account Balance Option

The real time account balance option presumes that the virtual card also is equipped with a dedicated balance key. This key does unlike

the signature key not require any user authorization because it can only be used to read the balance of the account associated with the

virtual card. The process starts by the Wallet using the virtual card’s “Bank Authority URL” to retrieve the ProviderAuthority object using an

HTTP GET. In that object there should be an extensions object as shown above. After that the Wallet creates a BalanceRequest (as

shown on the next slide), signs it with its balance key, and POSTs it to the URL provided by the specific balance extension.

Virtual Card Properties

Signature Key

Encryption

Public Key

• Payment Method URL

• Bank Authority URL

• Account ID

• Card Logotype

• …

Balance Key

{
"@context": "https://webpki.github.io/saturn/v3",
"@qualifier": "ProviderAuthority",

....

"extensions": {
"https://webpki.github.io/saturn/v3/extensions#balance": "https://payments.mybank.com/balance"

}

....

}

Retrieve the ProviderAuthority extensions object

Saturn © WebPKI.org 2020-10-26, API V0.68 19/20

The resulting response object holds the current balance (available funds) of the specified account.

{
"@context": "https://webpki.github.io/saturn/v3",
"@qualifier": "BalanceRequest",
"recipientUrl": "https://payments.mybank.com/balance",
"credentialId": "54674448",
"accountId": "FR7630002111110020050014382",
"currency": "EUR",
"timeStamp": "2020-10-07T10:43:05+02:00",
"requestSignature": {

"algorithm": "ES256",
"publicKey": {

"kty": "EC",
"crv": "P-256",
"x": "kiTXwSkkNag5RPjFyPgSNmhPl_97qQPCbPQ2GFmMSp4",
"y": "g8-4ymBfTg8o14EaJluDE8QmRfkrEy3M0VP61-TsoXg"

},
"value": "jstrRDK-2n5FfpiAOr896f1TKuc6wTSU….5zHmAJWMkAIsnA0E679es5KgBiRIH0Ha70XejQUw"

}
}

Balance key of selected virtual card

BalanceRequest Message

{
"@context": "https://webpki.github.io/saturn/v3",
"@qualifier": "BalanceResponse",
"accountId": " FR7630002111110020050014382",
"amount": "5543.00",
"currency": "EUR",
"timeStamp": "2020-10-07T10:43:07+02:00"

}

BalanceResponse Object

Core data of selected virtual card

Request signature based on JSF

https://cyberphone.github.io/doc/security/jsf.html

Saturn © WebPKI.org 2020-10-26, API V0.68 20/20

Q: Doesn't Saturn’s Merchant-to-User Bank AuthorizationRequest introduce security risks?

A: Yes, similar risks as on-line bank applications which effectively are open to requests from anywhere. Security features include:

• Small and strict message format

• All messages are signed using industry standard cryptographic algorithms

• AuthorizationRequest is signed by the Merchant and vouched for by the Merchant's Bank/Acquirer through the PayeeAuthority object

which also enables verifiable Merchant account data
• User signs a hash of paymentRequest with a key which only the User Bank knows about

• Only mutually signed authorizations are considered valid for processing

• Integral support for RBA (Risk Based Authentication)

• Tokenization of payment authorizations makes attacks on Merchant databases useless

Q: Can you trust the Wallet key storage?

A: Saturn depends on hardware backed keys like the AndroidKeystore.

Q: Doesn't Saturn effectively requires new client-side technology to fly?

A: Yes indeed, exactly like Apple Pay did. W3C’s https://www.w3.org/TR/payment-request/ is instrumental.

Q: Wouldn't it be better sending requests from the Wallet directly to the User Bank and then handing over responses to the Merchant?

A: Not really, see https://cyberphone.github.io/doc/defensive-publications/payment-authorization-scheme.pdf for more details on this matter

which also is a prerequisite for Wallet payment method independence.

Q: Is Saturn a “Push" or “Pull" payment system?

A: Saturn is not a payment system, it is rather a scheme where a User authorizes Merchant-initiated requests* which are transported back to

the User Bank via the Merchant. That is, the actual payment system is not a part of the depicted scheme.

Q: How does Saturn relate to ISO 20022, ISO 8583, and SEPA?

A: Only the actual payment systems need payment-system specific security, format, names, conventions, and processing. The ability

including payment-system specific data in AuthorizationRequest makes Saturn compatible with just about any payment system.

Q: How are Virtual Cards enrolled?

A: Virtual Cards would typically be enrolled from the User Bank’s Web site using a secure enrollment protocol like:

https://cyberphone.github.io/doc/security/keygen2.html

Q: Is Saturn a REST API?

A: No, because a payment is not a resource but rather an event with transactional behavior. In addition, messages are uniquely defined by

their JSON contents making digitally signing, embedding, debugging, and documenting straightforward. Wallet communication is based on

an interactive, scenario-dependent, asynchronous, bi-directional message channel. See: https://cyberphone.github.io/doc/web/yasmin.html

Saturn - FAQ

* Enabling Saturn supporting not only direct payments, but bookings, recurring payments, and automated gas station payments without modifications to the underlying payment system

https://www.w3.org/TR/payment-request/
https://cyberphone.github.io/doc/defensive-publications/payment-authorization-scheme.pdf
https://cyberphone.github.io/doc/security/keygen2.html
https://cyberphone.github.io/doc/web/yasmin.html

