
Calling Native “Apps” from the Web
[Combining the Best of Two Worlds]

Although Web technology is constantly improving, native applications remain important. As proof of that, Google and Apple

have not retired their native payment applications but rather added a Web interface, which recently also has become a W3C

standard known as PaymentRequest [https://www.w3.org/TR/payment-request/]. One reason why native payment applications

have more or less become the norm is that they are equally usable in non-Web contexts such as paying in a shop or sending

money to a friend. The ability interacting with OS level components like TEEs (Trusted Execution Environments), is also an area

where native applications have a clear edge over Web applications.

However, payment applications that do not rely on central providers using preconfigured URLs, typically need to enroll payment

credentials from any number of independent parties using their respective Web sites, making purely “App” based enrollment

solutions rather impractical. Native Apps also tend to constrain the way users can sign-up and authenticate. That is, there is

obviously a need for a counterpart to PaymentRequest for other applications than payments as well.

The current, widely deployed “standard” for invoking native Apps from the Web is using custom URL handlers. Although

working, this solution has (at least as implemented in Android), quite severe limitations including:

 Provides no security context of the calling Web page

 “Fire-and-forget” scheme offering no return value to the calling Web page

 Awkward task management since the App and the calling Web page are (by design) disconnected

 A result page invoked by the App may launch another browser than you started with, creating session state issues

Since all of these issues (and more) have been fully addressed in PaymentRequest, they are presumable relevant.
As far as I can tell, PaymentRequest does not introduce vulnerabilities beyond what URL handlers already do.

“Just for fun” (well, not really) I have been exploring using PaymentRequest for other applications than it was designed for:

Please ignore the ugliness of the App. It was
developed 2013(!) and will UI-wise be
rewritten from scratch…

Task view using URL Handler Task view using PaymentRequest

As can been seen in the left screenshot, the App (incorrectly) shows up as a separate task. Using PaymentRequest the called

App becomes in all respects (except for DOM access), a part of the calling browser page.

Note: Although this whitepaper talks about payments, identity related applications are probably an even bigger target.

V0.13, 2019-09-04, Anders Rundgren, anders.rundgren.net@gmail.com

https://www.w3.org/TR/payment-request/

