
Anders Rundgren, WebPKI.org, V0.99, 2015-04-28 Page 1/8 Web2Native Bridge (Public Domain Functional Specification)

Delegating Hardware and Security Related

Operations to the Native 1 Level

Since there are no “perfect” solutions, this proposal aims combining the best

of the two worlds (web and native), as an alternative to at any cost and time

duplicating the functionality of the native level in the Web.

A core feature of the scheme is that it enables developments by third-parties.

Currently browsers are effectively blockers for innovation.

In contrast to jumping between the Web and single-purpose “Apps”, a more

seamless Web experience is facilitated.

A deliberate “side-effect” of this proposal is that it makes it possible adapting

the security and privacy model to the actual application 2.

Although the presentation has a certain bias toward payments, the design

should be usable for many other applications as well 3.

This proposal is an enhanced version of Chrome’s Native Messaging.

1. Native in this context means platform-local including installable HTML5/JS applications.

2. Payment- and authentication-applications typically have quite different issues and requirements.

3. Including certificate enrollment, hardware token management, federated authentication solutions and on-line signature systems.

In fact, even massively popular music streaming services, cloud storage systems, on-line gaming sites and open source collaboration

networks currently rely on a hodge-podge of non-standard methods for interacting with client platforms from the browser.

Web2Native Bridge

Anders Rundgren, WebPKI.org, V0.99, 2015-04-28 Page 2/8 Web2Native Bridge (Public Domain Functional Specification)

bank.com merchant.com

1. Client receives a payment

key through WebCrypto

Using Web-level APIs like WebCrypto for Payments

Label:

bank.com

2. Client wants to utilize the

payment key through WebCrypto

Label:

bank.com

Problem

“Workaround”

There are multiple non-standard and awkward

workarounds which renders WebCrypto less

suitable for a wide range of applications which do
not have a specific origin as a natural boundary.

SOP (Same Origin Policy)

doesn’t permit merchant.com

accessing a key issued by

bank.com

The figure above shows the implications of keys bound to a specific origin.

It is important understanding that it would be dangerous allowing untrusted

merchant code directly accessing a bank-issued key.

Additional issues…

• There are numerous security HW standards.

That SIM, U2F, TPM, TEE, etc. operate at

entirely different levels of abstraction also

imply specific management solutions.

• There is no concept of “Trusted Code” in

the open Web.

Anders Rundgren, WebPKI.org, V0.99, 2015-04-28 Page 3/8 Web2Native Bridge (Public Domain Functional Specification)

Exposing System APIs in the Open Web – “Permission Hell”

A web-application wants to connect to a secure element.

Since a browser does not “understand” APDU it can only

offer a primitive security prompt.

Security Alert

OK Cancel

The site merchant.com wants

to access the secure element,

do you agree?

Block

APDU Level Access

Since the browser cannot know what the application is

about to do with signed data, it can only offer a primitive

security prompt.

PKCS #11 Level Access

Conclusion

Permissions are fine for things that ordinary users can understand like “Your Location” but quite unsuitable for a large class

of sensitive system APIs and associated user data which in the native world always are dealt with as a part of a packaged

application. The next page outlines a possible way to “emulate” this functionality in the Open Web. The primary goals are:

• Limiting direct access to sensitive APIs by untrusted web-code

• Supporting high-level service-oriented schemes to make web-applications less dependent on variations in platform APIs

and architectures

• Providing meaningful information to users

Security Alert

The site merchant.com wants

to sign data using key XYZ, do

you agree?

OK Cancel Block

Anders Rundgren, WebPKI.org, V0.99, 2015-04-28 Page 4/8 Web2Native Bridge (Public Domain Functional Specification)

Suggested Deliverable – Web2Native Bridge

The Web2Native Bridge is essentially only an application-neutral and domain-independent invocation and message-passing mechanism. After

invocation a private, asynchronous and opaque communication channel is created between the native application and the invoking web-page.

Web2Native Bridge applications typically offer a standardized interface towards the Web (=maintaining the web-paradigm).

Dedicated high-level service-oriented applications like shown above minimizes the need for annoying users with difficult security prompts.

A local wallet application could thus have identical characteristics when used in a brick-and-mortar shop as when invoked over the Web.

Payment Request [merchant.com]

OK Cancel

Payee

Amount

Demo Merchant

$275.00

PIN ● ● ● ● ●

S uperCard T M

Luke Skywalker

8743 4532 0231 9356

Native trusted (=vetted)

application which is pre-

installed or downloaded

from an “AppStore”

https://merchant.com/checkout

W2NB

Enhanced browser

“Trusted UI” and “Shield”

between the untrusted Web

and sensitive local resources

“Ordinary” web-page

1. Invocation of named application

2. Opaque bi-directional channel

Anders Rundgren, WebPKI.org, V0.99, 2015-04-28 Page 5/8 Web2Native Bridge (Public Domain Functional Specification)

Web2Native Bridge – What Would be “Standard”?

Web (Browser) Standard - The Actual Work-item

• Application Invocation and Discovery1 API

• Channel API. Most likely modelled after http://www.w3.org/TR/webmessaging/

• Origin of caller including HTTPS info for accommodating a variety of security models including SOP

Application-specific Standard

• Registered name of the target application (presumably identical for all platforms)

• Message data (typically serialized JSON creating a “virtual” API)

• Privacy-preserving features including user UI alerts (a properly designed payment system does not

expose identity information to the relying party in contrast to a digital signature application)

Platform-specific (Proprietary)

• Channel technology like UNIX sockets, stdin/stdout redirect, etc.

• “AppStore” and vetting processes

• Native applications including platform-specific UI

• Window handle to the invoking page enabling applications to “float” on top

• Authentication scheme between the browser and native applications

• Registry holding “granted” native applications

• Security hardware interface (TPM, TEE, SIM etc)

1) TBD, may not be required

The Web2Native Bridge enables

platform-independent interfaces to

the Web while the interfaces to the

platform may be entirely proprietary

http://www.w3.org/TR/webmessaging/

Anders Rundgren, WebPKI.org, V0.99, 2015-04-28 Page 6/8 Web2Native Bridge (Public Domain Functional Specification)

Web2Native Bridge – Security Considerations
Browser Security

The Web2Native Bridge introduces a mechanism which enables standard web-applications invoking external (local) applications through a new

interface (TBD). This does not in itself present a risk specifically to the browser environment.

After successful invocation the Web2Native Bridge creates a bi-directional trusted message channel to the invoked application which from the
browser’s side has similar properties to the already established postMessage() and addEventListener() methods.

That is, the Web2Native Bridge does not rely on installing custom code directly in the browser like the deprecated NPAPI did.

Platform Security

An external application of the type used by the Web2Native Bridge would most likely have the same possibilities as any other local application

running in the user’s context.

In contrast to traditional local applications, Web2Native Bridge applications can typically be invoked by any web-site. For large-scale usage,

such applications MUST therefore be vetted in a specific way to avoid potential security or privacy violations. That is, it MUST NOT be possible

invoking trust-wise unknown Web2Native Bridge applications except for development purposes. Also see HTTPS CCA.

Web2Native Bridge invocation requests MUST be derivable to secure origins (authenticated by HTTPS).

Web2Native Bridge applications MUST in a clear way inform users what is requested as well as including the ability to cancel the request and

possibly also offering an option to block.

Each Web2Native Bridge application exposes a specific interface based on messages passed through the Web2Native Bridge channel.

Web2Native Bridge applications MUST verify the correctness of inbound messages and immediately abort execution if there is a mismatch.

A Web2Native Bridge application MAY restrict access to specific domains.

A Web2Native Bridge application MAY restrict access by requiring callers proving their “membership” or similar.

Privacy Issues

There could be minor privacy-impediments since the invocation mechanism can enable additional finger-printing of the client (=finding out that a

certain Web2Native Bridge application is available). However, silent enumeration of supported applications MUST NOT be permitted.

If the user accidently interacts with another web-site than he/she intended, the user could be tricked providing information which usually isn't

intended for arbitrary consumption like an eID certificate containing a citizen ID. An identity-related Web2Native Bridge application SHOULD

therefore inform users about previously not encountered sites.

Application Vetting

In addition to the intrinsic security features, a party performing vetting may further restrict usage of certain applications and/or impose special

requirements on developers.

Anders Rundgren, WebPKI.org, V0.99, 2015-04-28 Page 7/8 Web2Native Bridge (Public Domain Functional Specification)

Web2Native Bridge – Related Information

Origin and “Inspiration” – Google Chrome Extensions:

http://www.cnet.com/news/google-paves-over-hole-left-by-chrome-plug-in-ban/

http://blog.chromium.org/2013/10/connecting-chrome-apps-and-extensions.html

Note: The Web2Native Bridge does not utilize browser extensions, it is a pure API.

Web Intents (Shelved):

http://www.w3.org/TR/web-intents

Recognized “Pain Point”:

https://code.google.com/p/chromium/issues/detail?id=378566

HTTPS CCA Security and Privacy Model:

HTTPS CCA

When Security, Web, and PPTs Get Too Boring – Real Stuff!

https://www.youtube.com/watch?v=0O1v_7T6p8U

http://www.cnet.com/news/google-paves-over-hole-left-by-chrome-plug-in-ban/
http://www.cnet.com/news/google-paves-over-hole-left-by-chrome-plug-in-ban/
http://www.cnet.com/news/google-paves-over-hole-left-by-chrome-plug-in-ban/
http://www.cnet.com/news/google-paves-over-hole-left-by-chrome-plug-in-ban/
http://www.cnet.com/news/google-paves-over-hole-left-by-chrome-plug-in-ban/
http://www.cnet.com/news/google-paves-over-hole-left-by-chrome-plug-in-ban/
http://www.cnet.com/news/google-paves-over-hole-left-by-chrome-plug-in-ban/
http://www.cnet.com/news/google-paves-over-hole-left-by-chrome-plug-in-ban/
http://www.cnet.com/news/google-paves-over-hole-left-by-chrome-plug-in-ban/
http://www.cnet.com/news/google-paves-over-hole-left-by-chrome-plug-in-ban/
http://www.cnet.com/news/google-paves-over-hole-left-by-chrome-plug-in-ban/
http://www.cnet.com/news/google-paves-over-hole-left-by-chrome-plug-in-ban/
http://www.cnet.com/news/google-paves-over-hole-left-by-chrome-plug-in-ban/
http://www.cnet.com/news/google-paves-over-hole-left-by-chrome-plug-in-ban/
http://www.cnet.com/news/google-paves-over-hole-left-by-chrome-plug-in-ban/
http://www.cnet.com/news/google-paves-over-hole-left-by-chrome-plug-in-ban/
http://www.cnet.com/news/google-paves-over-hole-left-by-chrome-plug-in-ban/
http://www.cnet.com/news/google-paves-over-hole-left-by-chrome-plug-in-ban/
http://www.cnet.com/news/google-paves-over-hole-left-by-chrome-plug-in-ban/
http://www.cnet.com/news/google-paves-over-hole-left-by-chrome-plug-in-ban/
http://blog.chromium.org/2013/10/connecting-chrome-apps-and-extensions.html
http://blog.chromium.org/2013/10/connecting-chrome-apps-and-extensions.html
http://blog.chromium.org/2013/10/connecting-chrome-apps-and-extensions.html
http://blog.chromium.org/2013/10/connecting-chrome-apps-and-extensions.html
http://blog.chromium.org/2013/10/connecting-chrome-apps-and-extensions.html
http://blog.chromium.org/2013/10/connecting-chrome-apps-and-extensions.html
http://blog.chromium.org/2013/10/connecting-chrome-apps-and-extensions.html
http://blog.chromium.org/2013/10/connecting-chrome-apps-and-extensions.html
http://blog.chromium.org/2013/10/connecting-chrome-apps-and-extensions.html
http://blog.chromium.org/2013/10/connecting-chrome-apps-and-extensions.html
http://blog.chromium.org/2013/10/connecting-chrome-apps-and-extensions.html
http://www.w3.org/TR/web-intents
http://www.w3.org/TR/web-intents
http://www.w3.org/TR/web-intents
http://www.w3.org/TR/web-intents
http://www.w3.org/TR/web-intents
http://www.w3.org/TR/web-intents
http://www.w3.org/TR/web-intents
https://code.google.com/p/chromium/issues/detail?id=378566
https://www.youtube.com/watch?v=0O1v_7T6p8U
https://www.youtube.com/watch?v=0O1v_7T6p8U

Anders Rundgren, WebPKI.org, V0.99, 2015-04-28 Page 8/8 Web2Native Bridge (Public Domain Functional Specification)

HTTPS CCA enables you to handover a certificate to any site who accepts it!

How can this possibly be secure?

• The requesting site never gets direct API access to client keys, keys are only supplied

as a part of a specific application (in this case the HTTPS CCA protocol)

• The code running the client-side of the HTTPS CCA protocol and UI is a part of the

trusted client platform, not something the [potentially malicious] site has provided

• Nothing is exchanged unless the user explicitly grants the site access

• Supports different privacy policies without requiring modifications on the requesting side

• Supports security hardware without requiring modifications on the requesting side

Reference: HTTPS CCA (Client Certificate Authentication)

Authentication Request

OK Cancel

Select a certificate to authenticate yourself to somesite.com

Certificate information

Luke Skywalker (Example CA1)

HTTPS CCA is

implemented in

every browser

Note that the Web2Native Bridge can also support

applications using the traditional SOP security model

